IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 31, NO. 11, NOVEMBER 2012

2169

Tissue Tracking and Registration for
Image-Guided Surgery

Michael C. Yip*, David G. Lowe, Septimiu E. Salcudean, Robert N. Rohling, and Christopher Y. Nguan

Abstract—Vision-based tracking of tissue is a key component
to enable augmented reality during a surgical operation. Conven-
tional tracking techniques in computer vision rely on identifying
strong edge features or distinctive textures in a well-lit environ-
ment; however endoscopic tissue images do not have strong edge
features, are poorly lit and exhibit a high degree of specular
reflection. Therefore, prior work in achieving densely populated
3-D features for describing tissue surface profiles require complex
image processing techniques and have been limited in providing
stable, long-term tracking or real-time processing. In this paper,
we present an integrated framework for accurately tracking tissue
in surgical stereo-cameras at real-time speeds. We use a combina-
tion of the STAR feature detector and binary robust independent
elementary features to acquire salient features that can be per-
sistently tracked at high frame rates. The features are then used
to acquire a densely-populated map of the deformations of tissue
surface in 3-D. We evaluate the method against popular feature
algorithms in in vivo animal study video sequences, and we also
apply the proposed method to human partial nephrectomy video
sequences. We extend the salient feature framework to support
region tracking in order to maintain the spatial correspondence
of a tracked region of tissue or a medical image registration to the
surrounding tissue. In vitro tissue studies show registration accu-
racies of 1.3-3.3 mm using a rigid-body transformation method.

Index Terms—Feature tracking, image-guided surgery, image
registration, salient features, stereoscopy, surface reconstruction.
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I. INTRODUCTION

A. Clinical Problem

MAGE-GUIDED minimally-invasive surgery has received

significant interest in recent years due to rapid progression
in the fields of robot assisted surgery, medical imaging tech-
nology, and augmented reality. Augmented reality enables the
identification and augmentation of subsurface tissue (e.g., le-
sions or vasculature) in the surgical camera images and can pro-
vide stable and persistent medical image registrations, improve
surgical margins, and reduce the time required in the operating
room [51].

As examples, partial nephrectomy and radical prostatectomy
are two surgical procedures that would benefit from providing
a persistent medical image registration to the surgeon’s view.
During partial nephrectomy, the kidney is dissected from the
surrounding tissue in order to allow a surgeon to clamp the
renal artery and stop blood flow prior to tumor resection. A la-
paroscopic ultrasound image or an external ultrasound image
can be acquired intraoperatively and registered to the kidney.
Since the kidney is mobile, a method for maintaining a registra-
tion would allow for subsurface tumor boundaries to be main-
tained in the camera images during resection. In radical prostate-
ctomy, an exposed prostate is imaged with transrectal ultrasound
and then dissected from surrounding tissues prior to resection.
Since contact is lost between the ultrasound transducer and the
prostate after mobilization and new ultrasound images cannot be
attained, it is critical to maintain the ultrasound-image/prostate
registration over time. Therefore, local tissue tracking is essen-
tial for maintaining such registration in a surgical environment
(Fig. 1).

The following are the requirements for tissue tracking and
medical image registration.

1) A dense set of trackable locations on the tissue surfaces
is required to describe local tissue deformation and move-
ment. Tracking should run in real-time.

Tracked locations must be repeatedly found in the endo-
scopic images in the presence of camera movement, human
motion, and instrument-—tissue interaction.

Tissue tracking should enable medical images to stay reg-
istered to the endoscopic tissue images over time while
avoiding drift.

2)

3)

B. Prior Work on Endoscopic Tissue Tracking and Registration

Tracking algorithms developed for natural scenes and urban
environments rely on the assumptions that the environment
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Fig. 1. Repeatedly identifying and tracking tissue locations in endoscopy (top),
and maintaining an image registration based on tracked movement (bottom).

exhibits strong edge features, low shadowing and lighting
changes, visually distinctive textures, and is generally not
deformable [57]. However, tissue surfaces are deformable and
are constantly affected by patient motion due to breathing and
heartbeat; furthermore, interactions with surgical instruments
cause significant tissue deformation. Tissues have visually
nondistinctive textures and therefore image patches are difficult
to distinguish from their local environment. Finally, tissue im-
ages exhibit considerable specular reflection caused by the wet
tissue surfaces, and endo-cavity lighting creates large shadow
effects and dynamic lighting conditions.

The first major challenge is identifying trackable features
from endoscopic images [46], [47]. Correlation-based tracking
has been proposed [13], [32], [33], [31], [42], but has been
limited by the lack of sensitivity to poor texturization. B-spline
polynomial fitting [18], homography transformation [2], and
radial basis functions [36], [38]-[40], [35] have been shown to
be effective in capturing the low-order deformations of a small
region of the beating heart at real-time speeds (50 Hz); how-
ever, higher order-deformation tracking using these methods
becomes nontrivial and computationally expensive. In their
current state, they have been found to only perform accurate
tracking in a short term of approximately 3 s without reini-
tialization [37]. In order to capture high-order deformations,
a large number of locations need to be individually tracked
over time. Lightweight corner and region detectors such as
the Shi-Tomasi features [43] and features from accelerated
segment test (FAST) features [41] have been proposed for
endoscopic images [27], [29], [12] and can perform at real-time
speeds; however, the correlation methods used to match and
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localize feature points between consecutive images are prone
to drift. The features that exhibited the highest density and
temporal persistency are the scale invariant feature transform
(SIFT) and speeded up robust features (SURF) [21], [22],
[26], [28]. However, these methods were unable to achieve
the real-time speeds required for an operating room setting. To
maintain real-time performance, methods involving tracking
only a small region of the image have been proposed [52].
Other methods such as the ones described in [24] used GPU
acceleration to acquire SIFT and SURF features for tissue
reconstruction. However, existing GPU implementations still
rely on trading computations between the GPU and the CPU
[9], [56], [44], and real-time performance on high-resolution,
feature-dense images is still difficult [45].

The second major challenge is long-term tracking. Features
found in previous frames are eventually obscured by camera
motion, occlusion, illumination change, specular reflection, and
instrument interaction with tissues. Although the use of camera
motion estimation for iterative localizations and tracking of
features [27], [29], [12] has achieved some success, it relies on
assumptions of a nondeforming scene. Otherwise, the tissue
tracking literature has shown success only in tracking short
tissue sequences (e.g., [37], [27]). Wengert et al. [54] and Wang
et al. [53] maintained a database of tracked and untracked fea-
tures over multiple frames, and used camera position estimates
to preserve the feature sets in subsequent frames. Grasa et al.
[12] developed a history-preserving feature tracking method
using the FAST detector; however, only sparse clouds were
tracked (45 features tracked per frame) at 9 frames/s. These
methods required camera pose estimation as well as corre-
lation-based template matching. Therefore, a tissue tracking
framework for long-term tracking that does not depend on
camera modeling or pose estimation is necessary, and different
feature detectors for the purpose of long-term tracking need to
be extensively evaluated.

The third major challenge is maintaining medical image reg-
istration through tissue tracking. There has been a gap in the lit-
erature between the application of tissue tracking in surgical en-
vironments and the efforts in medical image registration. Fidu-
cial or marker-based systems [30], [11], [49], [48] and magnetic
tracking systems [25] provide registration and tracking tech-
niques, but rely on the depositing of artificial markers onto the
tissue. Burschka et al. [5] showed that endoscopic image fea-
tures could be used to maintain registrations in nasal surgery;
however, in vitro tissues were marked using ink in order to
create distinguishable landmarks for tracking in the endoscopic
camera. Therefore, there is much room for improvement for
maintaining medical imaging registrations to endoscopic im-
ages, and a noninvasive method would be very beneficial.

C. Contributions

This paper addresses the challenges of tissue tracking and

registration through the following contributions.

1) We present the use of the STAR detector and the binary ro-
bust independent elementary features for real-time dense
tissue tracking. We provide evaluations of performance
(speed, stability, and accuracy) of popular feature detec-
tors for both 2-D and stereoscopic 3-D tissue tracking.
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2) We develop a history-preserving framework for tracking
tissue, and evaluate the feature detectors for long-term
tracking.

3) We extend the history-preserving framework for main-
taining a medical image registration in the endoscopic
images over time. We present preliminary data on main-
taining a registration for various tissue types.

II. METHODS

A. Choice of Feature Detector

In order to approach real-time performance while preserving
feature saliency, we chose a modified version of the Center
Surrounded Extremas for Real-time Feature Detection (Cen-
SuRE) feature detector [1] called STAR [55] and the binary ro-
bust independent elementary feature (BRIEF) feature descriptor
[6]. The CenSuRE feature detector and the BRIEF feature de-
scriptor are especially fast salient feature algorithms as they
are both intensity-based, binary methods that evaluate square
patches of an image. Furthermore, binarized methods reduce
floating point operations and can use boolean operations for fea-
ture definition and feature matching. Comparisons with Cen-
SuRE and BRIEF against popular feature descriptors in natural
scenes and urban environment are provided in their original pa-
pers [1], [6]. The STAR detector is simply an overlay of a Cen-
SuRE kernel with a 45° rotated kernel, which better approxi-
mates the Laplacian of Gaussians kernel, improving robustness
at little cost to performance. Furthermore, by varying the STAR
kernel size, we can identify patches of varying scales at which
BRIEF descriptors can be extracted, effectively making the fea-
ture scale-invariant. The choice of STAR over other detectors
such as Shi-Tomasi [43] and FAST [41] is based on the re-
port that Laplacian of Gaussian estimators have better feature
repeatability and saliency [50]. We have shown previously that
STAR and BRIEF are able to track tissue in endoscopic images
[59].

B. Temporal Feature Matching

There are six main steps to feature detection and matching
(Fig. 2). They are described in [59] and are outlined below.

1) Capture [Fig. 2(D): Capture an image from the surgical
camera.

2) Gaussian Smoothing [Fig. 2(2)]: Perform a preprocessing
step with a 3 x 3 Gaussian smoothing kernel.

3) Feature Extraction and Detection [Fig. 2(3)]: Extract
image features from the current frame that can be used as
local landmarks for tracking.

4) Feature Matching [Fig. 2(3]: Match the features to a
list of features extracted from previous frames, in order
to determine their movement in the scene. Various tech-
niques can be applied to narrow down the number of pos-
sible matches, reducing unnecessary descriptor compar-
isons and improving performance, as well as reducing the
possibility of incorrect matches [7], [20], [57]. Feature de-
scriptors are compared only if they have similar character-
istic scales, similar characteristic orientations, and are in
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Fig. 2. Flowchart depicting the proposed feature tracking framework on a
single image. Features are extracted in the current frame, and matched to
features extracted in previous frames. Matched features are updated, and new
features are saved. Feature that are not stable are deleted.

close proximity. Furthermore, two features are only con-
sidered matched if the distance between their descriptors
is significantly smaller than other possible matches. Neigh-
boring features are expected to move in similar directions
and distances due to the the nature of deforming tissue,
and therefore false positive matches of temporal feature
matches can also be filtered by examining neighborhood
feature movement. The details of implementing these fil-
ters are given in the Appendix A.

5) Updating of Feature Lists [Fig. 2(B): Features are inde-
pendently tracked over time by maintaining a list of fea-
tures that have been previously found. All previous fea-
tures that were matched are updated with the new feature
location and descriptor, and the remaining new, unmatched
features are appended to the list.

6) Deletion of Lost Features [Fig. 2(6)]: Whenever the ratio
between the number of times a feature has been found and
the number of frames since first detection falls beneath a
threshold, the feature within the list is deleted. This ensures
that the list only maintains features that are deemed to be
persistent within the scene. Since we do not want to throw
away new features as quickly as they appear, we wait until
10 frames after their first detection to evaluate whether they
are to be deleted. This wait time was chosen by prelimi-
nary experiments, as was the threshold for deletion, set to
approximately 40%, above which there was a significant
drop-off of the stability of feature points.
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C. 3-D Depth Estimation

Given the feature tracking solution we proposed, we extend
its function into stereo depth estimation and dense 3-D point
localization for reconstructing depth maps of the scene. Be-
cause we have two dense feature populations for the left and
right stereoscopic channels, we match features between the
channels to establish a stereo-triangulated point. The strategies
described for temporal feature matching can be used again for
stereo matching during depth estimation (filtering by scale,
orientation, proximity, and ratio of descriptor distances, as
described in detail in Appendix A). Features can be tracked in
3-D by first performing 2-D tracking on one channel, and then
taking the tracked features and performing stereo-matching
with the other channel’s features.

D. Region Tracking and Registration

We first assume that a medical image (or volume) registra-
tion is already performed within a localized region in the stereo-
scopic images. This can be achieved using a method such as the
one described in [58]. A region is then selected on the tissue sur-
faces that appears closest to the center of the registered image/
volume, and stereoscopically-matched features that are found
within this region are saved to a separate feature list, as are their
3-D locations. For the sake of clarity, we will call this list the ob-
ject feature list, as the methods we propose are similar to those
used for object detection and tracking.

We present a visual flowchart of our proposed region tracking
and registration framework in Fig. 3, depicting a single iteration.
The steps are presented below.

1) Object Feature Matching [Fig. 3(D)]: In order to match
the selected region’s features to the features in the scene,
two strategies can be used. First, we can rely on the
matching parameters described in II-B-4 to match object
features to features that have been temporally tracked and
stereoscopically matched. This method provides redun-
dancies in temporal and stereoscopic matches that can be
used for outlier rejection. A second strategy is to give each
scene feature a unique ID that it retains as it is tracked from
frame to frame. Then, temporal tracking of scene features
will provide the motion of the object features through their
identification via the scene features’ IDs, which is more
computationally efficient. An attempt is made to match
any object feature that is not matched temporally with
stereo-matched scene features as described previously,
based on scale, orientation, proximity, descriptor distance
ratio, and neighborhood consistency.

2) Acquire Registration [Fig. 3(2)]: A temporal registration
T requires a set of object feature locations in 3-D, denoted
by X, to be matched to another set of 3-D feature locations
in the current frame, denoted by Y, such thatY = T'X . We
use Random Sample Consensus [8] (RANSAC) in order to
perform outlier rejection and identify the best registration
using only a subset of the N points [53]. We consider out-
liers to be those feature points that fall outside the registra-
tion model by over five pixels of error in stereo-matching.
The least squares method to find 7' was performed using
Horn’s quaternion-based method [14]. A minimum of three
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Fig. 3. Proposed object tracking and registration framework. An object is de-
fined by the user or a detection method in frame 0, and features within the region
are saved as object features. Features tracked in subsequent frames are matched
to the object features to keep the object features up to date, and the new features
in the tracked region are appended to the object feature list. All object features,
registered images, and region outlines are kept in the frame 0 coordinate system
to avoid drift from successive transformations.

points are required in Horn’s registration algorithm in order
to acquire a rigid transformation. For simplicity, we make
the assumption that the tissue is moving rigidly resulting
in a homogeneous transformation.

3) Updating of Object Feature List [Fig. 3(3)]: To avoid
registration drift, we need to update object features differ-
ently than when tracking features temporally. Given a set
of object features in frame 0 and their locations X, we
can identify their locations in the current frame n, X,, such
that X,, = "Ty - Xy. We do not update the feature loca-
tions based on the matches from X,,; rather, we only up-
date their feature descriptor vectors, and the transformation
"Ty. By doing so, we are able to maintain a base frame of
reference for all subsequent frames. Therefore, for the fol-
lowing frame at » 4 1, we first transform the features from
the original object frame to the last frame n using "7j.
Then we calculate the incremental transformation » 117,
to transform the object features to the new frame. There-
fore, "7y = 1T, - Ty,

With time, features that were originally used as anchors
will eventually be lost due to image noise and erroneous
matches; therefore, the outline of the image patch that orig-
inally identified the anchor features is also transformed
from frame to frame, and any new feature that appears
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within the outline will be added as an anchor point. We cal-
culate the inverse transform %7, ; = "*17 1 in order to
reproject them into the original object frame 7. This avoids
the drift of previously saved object features caused by suc-
cessive transforms.

4) Deletion of Lost Object Features [Fig. 3(@): Since the
list of object points will grow indefinitely without applying
some mechanism for feature deletion, we set a threshold
number of anchor points to track. In practice, we only keep
the most stable 500 features and their 3-D locations.

III. EXPERIMENTS

A. Temporal Tracking

To evaluate the proposed method in tissue tracking, we com-
pare the STAR+BRIEF algorithm to two of the de facto stan-
dards for salient feature detectors in the literature, SIFT and
SURF. We follow the formulation of the BRIEF feature de-
scriptor described in [6], choosing a feature vector length of
N = 256 bits and a patch size of S = 25, and we follow the
original papers [20] and [3] for the implementations of SIFT
and SURF respectively. We use three octaves with three levels
each for the SIFT and SURF implementations with the first oc-
tave being the original image resolution. We chose a Hessian
threshold value of 50 for the SURF implementation. For the
STAR detector, we constructed the two successive center-sur-
rounded bi-level kernels to have an outer edge length of eight
pixels, an inner edge length of four pixels, and a scale space
pyramid of nine levels between 1.0-5.0 in increments of 0.5.
The operating parameters of the algorithm were experimentally
chosen as a Harris corner response threshold of 2, a nonmaximal
extrema suppression of 5, and a line suppression ratio of 10.

Evaluation of the salient feature algorithms will be based on
several criteria.

1) Speed of algorithm: the time required for feature detec-
tion, descriptor extraction, and matching with previously
found features.

2) Average number of features found in each frame: this
can vary significantly depending on video characteristics
(e.g., size and resolution, noise, motion blurring, shading,
etc.). However, it is useful in that it provides an idea of
a feature detector’s ability to densely characterize a tissue
surface, and it allows for comparisons of densities between
different feature detectors.

3) Percent of features matched between consecutive
frames: Calculated as the ratio between number of
features found and the number of features matched to
previously saved features in each frame.

4) Average lifetime of feature: The number of frames be-
tween a feature’s first detection and its deletion.

5) Percentage of time features are found: Evaluated as the
ratio of frames in which a certain feature is found to the
number of frames since its first detection. Given that fea-
tures will often flicker in and out of an image due to video
artifacts and noise, this evaluation will provide a measure
of the temporal stability of features.

6) Average size of static feature list: The number of saved
features that new features will be matched to.
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7) Localization accuracy and drift of selected features:
Since there is no ground truth available for the in vivo
video sequences, we used the approach of Kalal et al. [15]
to calculate the forward—backward error of select features.
Features are tracked in frames as they move forwards in
time, and at time 7, the video frame sequences are reversed
and the features are subsequently tracked backwards in
time until the beginning of the video. Performing this for-
ward—backward tracking essentially allows us to investi-
gate how likely a feature is to drift within the image se-
quences due to feature mismatches in frames. A perfect
feature correspondence would be achieved when the po-
sition of a feature moving forward and backwards in time
line up at every time step. At any point in time, if a feature
is mismatched to a different location, it is likely that this
error is continued into subsequent frames resulting in drift.

B. 3-D Depth Estimation

In order to evaluate the feature tracking framework for
stereoscopic depth estimation, we will evaluate the following
parameters.

1) Speed of the stereo matching: The time required to iden-
tify matches between features found in the left and right
frames given the two lists of features.

2) Number of features matched across channels: This
value will differ depending on the video sequence photo-
metric properties.

3) Percentage of features stereo-matched from a single
frame: Evaluated as the ratio of the number of features that
were matched between the left and right camera frames,
and the number of features found in the left camera frame.

C. Region Tracking and Registration

For tissue region tracking experiments, we set up an in vitro
experiment on three different tissue types: kidney (bovine),
heart (bovine), and liver (porcine). On each tissue, we placed
a 2-mm-diameter steel bead fiducial. These fiducials are used
to represent locations within the tissue that can be segmented
clearly in the camera images and will be used to test the accu-
racy of registration.

We placed an endoscopic stereo camera approximately
5-10 cm away from the tissue such that the fiducials could be
seen in both stereo channels. We then moved the tissue, with
rotation and translation in all three dimensions, taking care to
keep the fiducials continuously seen in all three channels.

Since we do not want the fiducials to provide any help in de-
termining a registration, we automatically remove all the ex-
tracted features whose templates would overlap with the fiducial
locations, based on their patch location and size. This ensures
that the fiducials, which represent a strong trackable location,
will not improve the registration. In the first frame of tracking,
we manually identified the fiducial locations in the left and right
camera images and we acquired their locations in 3-D. In sub-
sequent frames, we applied the chain of transformations to the
original fiducial locations in order to predict the motion of the
fiducials over time. We compared this to tracking of each fidu-
cial individually, using a 31 x 31 normalized cross-correlation
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TABLE I
PARAMETERS FOR TEMPORAL TRACKING, STEREOSCOPIC MATCHING, AND OBJECT TRACKING

Value
Parameter Symbol Temporal Tracking Stereo Matching Object Tracking™
Scale Threshold K log(2.0) log(/(2)) log(2.0)
Orientation Threshold (€] w/18 w/12 N/A
.. : . . 0.5%image_width on x-axis . .
Proximity Threshold § 0.2xrm image_width 0.05+image_height in y-axis 0.5ximage_width
Descriptor Distance Ratio A 0.5 0.5 0.5
Difference in movements v 2 x log(1.5) N/A 2 xlog(1.5)
Difference in angles € w/18 N/A /18

* only uses these parameters when trying to re-establish a registration after it has been lost; otherwise use feature IDs

window over the fiducial location, to estimate their locations in
each stereo channel and in 3-D.

D. Apparatus and Test Data

We used a PC with an Intel Core i7 CPU 960 at 3.20 GHz
with 12 GB RAM, on the Windows 7 64-bit platform. No GPU
acceleration was performed, and all the processing was kept on
the system memory and processor. Video sequences were read
frame-by-frame from the hard disk.

To evaluate temporal tracking and 3-D depth estimation, we
used a range of videos of intraoperative laparoscopic porcine
studies from an Imperial College London in vivo dataset, which
can be found online, along with associated camera calibration
files [16]. These videos represent a wide array of scene mo-
tions that cover camera translation, scale change, camera rota-
tion, multiple viewpoints (i.e., affine transformation), and tissue
deformation. The videos are as follows.

1) Translation: Abdominal cavity just after insufflation. The
surgeon moves the endoscopic camera to approximate
translation. Resolution: 320 x 240 (upscaled to 640 x 480
through linear interpolation in order to detect small fea-
tures); Length: 1050 frames.

2) Rotation: Abdominal cavity just after insufflation. The
surgeon rotates the endoscopic camera. Resolution:
640 x 480; Length: 710 frames.

3) Series: Abdominal cavity just after insufflation. The
surgeon moves the endoscopic camera in a series of
movements involving translation and scaling. Resolution:
640 x 480; Length: 1200 frames.

4) Heartbeat: Open-chest procedure with an exposed heart
with significant instrument footprint in images. The endo-
scopic camera is held stationary, imaging a rapid heartbeat.
Resolution: 360 x 288 (upscale to 720 x 576); Length: 650
frames.

We also tested that the temporal tracking of tissue works with
human patient data. The videos used for evaluation were cap-
tured during partial nephrectomy operations. Patients were re-
cruited with signed consent after approval from the University
of British Columbia Clinical Research Ethics Board (Certificate
Number H08-02798). The video sequences are as follows.

1) Regular Motion: A partially exposed kidney is viewed
by a stationary camera. A regular heartbeat results in a
regular kidney motion of a few millimeters. Resolution:
640 x 480.

2) Deformation: The exposed kidney with a visible tumor is
repeatedly deformed by the surgical instruments. Resolu-
tion: 640 x 480.

3) Cauterization: The surgeon performs cauterization on the
several parts of the surface of the kidney, causing smoke
to cloud and waft through the surgical images. Resolution:
640 x 480.

4) Postdissection: After tumor dissection, the kidney is repo-
sitioned by the surgical instruments to show the dissection
location. More blood obscures the tissue surfaces resulting
in the loss of tissue texture information and an increase in
specular reflection. Instrument occlusion also covers larger
areas than in other videos. Resolution: 640 x 480.

The videos used for region tracking and registration eval-
uation were captured using a da Vinci SI laparoscopic stereo
camera. The videos that were used are of the kidney (250
frames &8 s), heart (650 frames ~20 s), and liver (700 frames
~23 s) undergoing translation, rotation, and scaling. Videos
were cropped to a resolution of 560 x 352. These datasets can
be found online [17]. We aim to keep these videos online as a
repository in order to allow other researchers to compare their
algorithms using common data.

We performed a two sample ¢-test (p < 0.05) for each mea-
sured evaluation criteria to compare STAR+BRIEF to SURF,
STAR+BRIEF to SIFT, and SURF to SIFT. Camera calibration
was performed using the Matlab calibration toolbox by Bouguet
[4]. Our camera calibration of the da Vinci SI cameras was found
to have approximately a 5 mm baseline and near-identical left
and right camera orientations.

Table I summarizes the parameters used for tissue tracking,
stereoscopic matching and object tracking. The motivation
behind selecting the value of each parameter is given in the
Appendix B.

IV. RESULTS

A. Temporal Tracking Results

Fig. 4 shows samples of each video test performed with an
overlay of extracted and matched features. SIFT features are
shown to be the most numerously detected, and although the
percentage of features matched temporally is less than that of the
other feature types, it still offers a higher density of tracked fea-
tures within each frame (Fig. 5). Both STAR+BRIEF and SURF
have similar feature densities, but STAR+BRIEF is seen to have
a slightly higher percentage in temporal matching (Fig. 6) while
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keeping track of the least number of previously matched fea-
tures (Fig. 7). This reduces the necessary computations required
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Screen captures of frame 20 of the series (top row) and heartbeat video (bottom row). Circles represent feature locations.
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Fig. 7. Number of features found previously that is kept in a history-preserving
feature list.

for matching between features as thus reduces the computation
time.

Fig. 8 shows the average percentage of features that are
deleted at every frame. A higher percentage represents the loss
of history for a previously saved feature; if the same feature is
found in subsequent frames, it will be considered a brand new
feature. A reduction of this value will improve the longterm
persistency of features within a video sequence. STAR+4BRIEF
is shown to have the lowest percentage of features deleted,
followed by SURF, and subsequently SIFT.

To elucidate the prevalence of features among consecutive
frames, we need to investigate just how often they are found and
subsequently matched in following frames after their first detec-
tion and extraction. In order to do this, we generate a normal-
ized histogram shown in Fig. 9, depicting the number of features
during runtime that are found in at least a certain percentage of
the frames following initial detection. Since features are deleted
from the list if they are found in less than 40% of all the frames,
we only keep track of features that are found in greater than 40%
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Fig. 9. Histograms depicting the number of features that are found in a cer-
tain percentage of subsequent frames. The graph is cumulative such that feature
numbers drop off as the ratio between times found and total lifetime increases.
Evaluations are performed on the (a) translation, (b) rotation, (c) series, and
(d) heartbeat videos.

of all the frames. STAR+BRIEF features are found to be consis-
tently prevalent in scenes in a similar manner as SIFT, whereas
SUREF features are found to be less persistent.

Fig. 10 shows an example of a feature tracked in both for-
wards and backwards time for each tracking algorithm. The
feature chosen to be tracked is one that appeared at highest
frequency moving forward in time and therefore suggestive of
the persistency of the feature in the video sequence from the
beginning to the end. Fig. 10 shows that each tracking algo-
rithm manages to track the features well; matching forwards and
backwards motions will fall on the exact same pixel location
in both forwards and backwards time. Fig. 11 shows the pro-
posed STAR+4-BRIEF feature tracked in Fig. 10 over the entire
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Fig. 10. Sample feature location is chosen for each feature tracking algorithm,
and the feature’s pixel-location is tracked from the beginning to the end of the
video (red). Subsequently, starting at the end of the video, the feature is tracked
backwards towards the start of the video (blue). Due to frames where a feature
is momentarily lost, there are gaps within the tracking in both directions. X-axes
represent time (sec) and Y-axes represent pixel location.
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Fig. 11. Example of a STAR+BRIEF feature being tracked over time.

1100

sequence of the videos at 100 frame intervals. The feature re-
mains true to its original location over the duration of tracking.
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Fig. 12. Speed of the feature tracking framework for STAR+BRIEF, SURF,
and SIFT feature types.

Fig. 13. Sample image of matched left and right channel feature. The image
above is the left channel, populated by features (#) found in the current frame.
They are connected to the locations on which the matching right features (1)
would be located.

As expected, using STAR+BRIEF features is far more effi-
cient in speed than SURF and SIFT, achieving nearly real-time
frame rates (15-20 Hz in most scenes, Fig. 12). There is min-
imal difference in tracking between scene rotation and transla-
tion, which is likely due to the fact that inter-frame movement
is small. Scenes with higher dynamic motion (i.e., heartbeat)
show a reduction in speed; we hypothesize that because of the
dynamic environment, poor textures and highly specular reflec-
tions, a larger number of features are kept in the feature list,
resulting in a linearly increasing number of feature match eval-
uations required.

B. 3-D Depth Estimation Results

Fig. 13 shows an example of the matching that occurs be-
tween left and right camera frames. The features within the left
channel are matched to the features in the right channel (using
the STAR+BRIEF method), and both locations as well as an in-
terconnecting line are overlayed on top of the left channel frame.
This image is a typical representation of the feature density and
of the disparities between the left and right channel features.
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Fig. 16. Time required to process a pair of stereo frames for feature matching.

During stereoscopic feature matching, STAR+BRIEF is seen
to match the least number of features as compared to SURF, and
SIFT is seen to match many more features than the other fea-
ture tracking algorithms (Fig. 14). This is to be expected, since
STAR+BRIEF and SURF both find fewer numbers of features
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Fig. 17. Depth estimation of in vivo stereo video. (a) Stereo matches in the left frame. (b) Stereo-triangulated points and estimated camera position. (c) Interpolated

depth map. (d) Reprojected image.

within each frame than SIFT. We see that STAR+BRIEF fea-
tures exhibit the highest percentage of matching (approximately
50%), followed by SURF and SIFT (Fig. 15).

One interesting effect that is immediately noticeable is that
the video of the porcine heartbeat has significantly fewer fea-
tures that are stereo-matched from frame to frame. This can be
attributed to the fact that during systole there are high frequen-
cies contributing to the motion (100 Hz and above) that cannot
be accurately captured with a 30 f/s camera. Motion blur results
in less saliency among features. When the heart is in diastole,
we are able to see a great deal more stereo-matched features.

Fig. 16 shows the time required to perform feature matching
between left and right channel features. Due to the heavy
filtering that is applied prior to performing descriptor vector
matching, the processing time for each is significantly shorter
than that of temporal tracking. We can see that stereo-matching
for STAR+BRIEF is extremely fast and can be added to
temporal tracking with little added cost to performance.

We provide two visualizations of the 3-D feature depth maps
in Fig. 17, one of the beating heart and one of the insuflated ab-
domen. We first take the feature pairs matched in Fig. 17(a), and
we perform stereo-triangulation in order to acquire a 3-D cloud
of points (Fig. 17(b), camera locations are shown in the figure).
We present a cubic interpolation over these points in Fig. 17(c)
to create a contiguous depth map, and we reproject the points
among the depth map to visualize their depth consistency. We
can see that the 3-D point locations follow closely the smoothed
contiguous depth map. Finally, we reproject the image onto the
depth map in Fig. 17(d), showing that the extracted contours are
congruent with the perceived contours of the tissue.

C. Region Tracking and Registration Results

Fig. 18 shows fiducials registered and tracked over time for
the kidney, the heart, and the liver. Tracking from the first frame
until the final frame, the Euclidean Error between the estimated
true final fiducial position and the fiducial position from regis-
tration is 3.31 mm (heart), 2.02 (kidney), and 1.27 mm (liver).

We provide the frame-by-frame tracking of the fiducials in
Fig. 18 to show the tracking progression over time.

D. In Vivo Human Partial Nephrectomy Results

We applied the STAR+BRIEF framework to laparoscopic
videos of human partial nephrectomy studies. Table II shows a
summary of the performance of the algorithm on different por-
tions of partial nephrectomy. For all tests, the videos tracked
approximately 500800 features in every frame in order to pro-
vide a dense description of surface movement and deforma-
tion. This can be seen in Fig. 19, which gives a depiction of
the persistent features that are tracked during regular motion,
induced tissue deformation, surface cauterization, and postdis-
section manipulation of the kidney. Cauterization is shown to
reduce the number of features. We observed that this only oc-
curs during continuous periods cauterization [as shown in the
Fig. 19(c)], where there was enough smoke to fill a substan-
tial portion of the endoscopic scene. Thin bands of cauteriza-
tion smoke wafting through the image (similar to blowing out
a match) caused primarily small features to be obscured and to
lose tracking. However, these features were found and tracked
again after the smoke clears from the image (approximately
2-3 s after cauterization halts).

Temporal matching between frames was again found to be
approximately 90% for all video instances, and on average,
1300-2000 features were saved in order to be matched in
subsequent frames (Table II).

V. DISCUSSION

In this paper, we have aimed to address significant clinical
needs for tissue tracking and medical image registration.

Our experiments have shown that it is possible to provide
real-time tracking of in vivo tissue surfaces using efficient
salient feature detectors and descriptors. We were able to
attain densely-populated feature maps that can be accurately
stereo-matched and triangulated into 3-D space.
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Fig. 18. Registration and tracking combination. Circles represent starting location of a surface fiducial, and triangles represents the final position of the surface
fiducial after tracking through the videos. Tests were performed in vitro on (a) kidney, (b) heart, and (c) liver.

Fig. 19. Features tracked for over 80% of the frames during human partial
nephrectomy. These images are samples of (a) regular motion, (b) deformation,
(c) cauterization, and (d) postdissection appearance and motion.

In order to track tissue for long periods of time, we presented
a novel history-preserving framework for tracking previously-
matched features over time. It allows for features to be tracked
individually over consecutive frames, and also allows them to
enter and exit the scene for periods of time.

Finally, we extended our tissue tracking framework for long-
term tracking of a region of tissue. To the best of our knowledge,
we have provided the first evaluation of error in maintaining a
registration using tissue tracking, through measuring the fiducial
registration errors of tracked tissue under controlled rigid mo-
tion. We have shown that registrations can be maintained with
an average error of 1.3-3.3 mm.

The proposed tracking framework does not identify or handle
the effects of instrument occlusions and shading, and therefore
a next research step would be to investigate possible methods

to track the instruments and mask their effects from the salient
feature trackers. Potential approaches include color filtering
and other techniques such as straight edge detection. Specular
reflection is often a significant contributing factor to poor tissue
tracking, and methods such as those described in [34], [19], and
[40] could be used to reduce the effect of specular reflection.
Investigation of other salient features and filtering techniques
may improve tracking robustness, such as the affine-invariant
anisotropic regions detector and extended kalman filtering
methods presented in [10]. Varying the threshold limits (see
Appendix B) can be used to increase or decrease the number
of features and robustness of tracking as needed for different
video sequences. Statistical analysis of feature tracking for
intraoperative video data (including effects of cauterization,
instrument occlusion and instrument—tissue interaction) will a
focus of future work.

Implementing multi-threading and GPU acceleration for se-
lected subprocesses (such as dividing each level of the pyra-
midal scale space to a separate thread for feature extraction) has
been shown to be effective in significantly improving the speed
of feature detection [9], [45], [44], [56], allowing for more com-
putationally intensive feature detectors to be used in real-time.
In the implementations described by Sinha [45] and Wu [56],
a number of feature extraction and feature tracking computa-
tions were left for CPU processing as they were found to be
more efficient. Nonetheless, the trade off between CPU pro-
cessing and GPU acceleration for feature list management and
feature matching is nontrivial. We plan to investigate that in fu-
ture work.

Our evaluation of maintaining a medical image registration
based on object-tracking techniques developed in this paper has
been shown as a proof of concept rather than a definitive method
for maintaining a registration. Nonetheless, we believe that by
using camera-based registration methods such as ones described
in [23] or [58], we may be able to maintain a registration with
no extra equipment and little effort to the surgeon. Maintaining
image registration accuracies within 3 mm may be accurate
enough for coarse tumor localization in certain applications.
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TABLE II
PERFORMANCE OF THE STAR+4BRIEF FEATURE ALGORITHM ON /N V7¥0 HUMAN PATIENT STUDIES DURING PARTIAL NEPHRECTOMY

Regular Motion

Cauterization Deformation  Post dissection

Number of Features 549 + 36
Number in List 1279 £ 110
Percent of New Features Matched 93.28 £+ 2.57
Percent of List Features Deleted 2.85 + 0.83
Frames Per Second 14.03 £+ 1.03

730 £ 64 721 &+ 53 489 £ 86
1952 + 221 1905 = 202 1330 + 228
89.77 £ 3771 89.66 £ 3.89  88.43 £ 5.11
3.74 £ 0.85 3.82 £ 098 4.10 £ 1.27
9.08 £+ 0.88 9.40 + 0.91 13.87 £ 2.09

For partial nephrectomy (where the kidney is mobilized and
clamped so that it does not experience significant motion ef-
fects) and for radical prostatectomy (where a mobilized prostate
experiences negligible motion effect from patient breathing and
heartbeat), a rigid registration would likely suffice.

Even without medical image registration, object tracking can
still be very useful during a surgical procedure. As examples,
the use of object tracking can provide persistent cues of tumor
boundaries throughout the operation, even as they move in
and out of the endoscopic view. Region tracking techniques
presented in this paper can provide surgeons the ability to create
and track boundaries of suspect tissue regions throughout a
biopsy, and automatically find and revisit them with relative
ease. Beating heart operations could benefit from tissue region
tracking in that tracking of the heart tissue motions can be a
means for enabling motion compensated surgical instruments.
Another open area for research is in full scene reconstructions,
which can be used for camera-based 3-D organ modelling or
for the purpose of offline virtual endo-cavity exploration.

VI. CONCLUSION

In summary, we have presented an overall framework for
tracking tissue in 3-D within an in vivo surgical environment
and maintaining a medical image registration. We provide three
key contributions within this paper.

1) An extensive evaluation of popular salient features al-
gorithms (SIFT, SURF, and a combination of STAR and
BRIEF) for acquiring dense, stable, accurate and fast
tracking of in vivo tissue. The STAR+BRIEF algorithm
tested in the paper can reach real-time tracking speeds
while still maintaining high feature density and tracking
accuracy.

2) A novel framework for history-preserving feature manage-
ment that enables features to be tracked for long periods of
time, without the use of camera pose estimation. Features
can be recognized and continuously tracked despite having
been lost or having left the scene momentarily. 3-D defor-
mations of the tissue can be fully captured and accurately
tracked since each feature is individually tracked in space.

3) A novel method for maintaining an image registration
using our history-preserving framework. Feature tracking
is used to maintain the registrations over time while
avoiding drift. We present the first accuracy measurements
for maintaining a registration for a variety of tissue types.

Future work will investigate techniques involving GPU ac-
celeration for improved speed, methods for handling specular

reflection and instrument occlusion, and nonrigid registration
methods for maintaining higher registration accuracies over
time.

APPENDIX

A. Filtering Possible Feature Matches

This section describes the methods used during feature
matching that reduce the number of unnecessary descriptor
distance evaluations and reduces false positives in matches.
These methods are generalized for all temporal, stereo, and
object feature matches.

Given the ith feature from list 1, f;{x;. v;, k;, 8;), and the jth
feature from list 2, f;{z;,y,,k;,6;), where z;, y;, ;, and y;
are their pixel location in the original image, k; and £; are their
characteristic scales, and f; and §; represents their orientation,
we will only include within the set of matching possibilities
those pairs of features that satisfy the criteria listed below.

* Scales: The characteristic scales of features are compared,

where the maximum ratio « of scales is

log (

Orientations.: The characteristic orientation of SURF and
SIFT features are compared, where the maximum allow-
able orientation difference O is

i

)

— < K.
kj

(1

6; — 0;] < ©. @)

* Proximity: We do not expect to see large motions from
consecutive frames; therefore, we can limit our search to
a width ¢, and height 9, centered about a feature’s last
known location

‘.L, — .L]| < by

Yy | < 6.1/' 3

* Descriptor Distance Ratio: Given a subset of possible
matching features, we let dg,5 represent the descriptors’
distance for the best match and dyeconq represent the
descriptors’ distance for the second best match. Given a
confidence threshold A, a match is only considered valid if

\Z/i -

e
second < A

4)
dﬁrst

* Neighborhood Consistency: One of the characteristics of in
vivo surgical video is that the soft-tissue within the scene
deforms with the adjacent tissues and depth discontinuities
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within the image are sparse. Therefore the spatial move-
ment of a feature will be similar to those of neighboring
features.

A feature’s neighbors are defined as features that are within
a distance of 20% of the image width. Given a set of two
neighboring feature locations in frame n, {z1 », ylm,} and
{z2.m, ygm}, and their matched locations in the previous
frame, {#1n-1,y1n—1} and {xsn_1,y2n_1}, We con-
sider their movements to be significantly different if

8xz2 + 67
lop [ =22 1771
‘ o (a m (sys) 77 ®

where {(5331, (52/1} = {.’L‘Ln —X1in-1:Y1n — yl,ﬂfl} and
{(SZL‘Q, (Syg} = {ZL)Q’T,, —Ton-1,Y2n —yQJ,,,l}, where ¥ rep-
resents the maximum allowable ratio of squared distances
of movements between the neighboring features.
Furthermore, we consider the dot product of their move-
ment vectors, and evaluate the direction of movement of
neighboring features to be significantly different if

ox1 - 0y + by1 - 0y2
Vot + 6yi /a3 + 6y

where ¢ is the maximum allowable difference in the direc-
tion of movement.

In practice, we only check against € and +y if there is a tem-
poral displacement of five pixels for each matched feature,
as smaller displacements results in coarser distances and
orientation values, and therefore would reduce the efficacy
of the methods.

Af = acos

Q)

B. Selection of Parameter Values

This section describes the parameter values for the tissue
tracking experiments that were used.

x = 2.0 matches features that are at most one octave apart
over a single timestep; feature scales are not expected to change
significantly between the left and right stereo channels, and
therefore s = log(+/2). Feature orientations are not expected to
change more than © = 7 /18 radians during a single timestep;
between the left and right cameras, @ = x/12 to account for
slightly different viewpoints. (6,6, = 0.2 % image_width)
in order to capture large tissue motions during tem-
poral tracking. The epipolar constraint in stereoscopic
matching limits the feature matches to within a narrow
band (4, = 0.5 * image_width, §, = 0.05 = image_height). A
wide search of object features (6,,6, = 0.5 x image_width)
accounts for situations when tracked region leaves the image
scene. A = 0.5 is chosen such that the best feature match has
half the error of the second best match. v = 2 = log(1.5) and
¢ = w/18 were chosen to restrict the movement of features
bundles to represent smooth and consistent motion, which
should be characteristic of in vivo tissue.
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